Westwood Public Schools

Hanlon Elementary School Building Project

> Sustainability Subcommittee 06.02.2020

Agenda

- Summary last meeting
- Recent Decisions
- Current Decision Points
- Discussion PV/NZE/Carbon Reduction
- LEED Checklist Review
- Recommendation to SBC

Summary – Last Meeting

- 1. 20% above new energy code to achieve 2% points from MSBA remains priority
- 2. Majority appear in favor of net zero energy approach; aligns with Town priorities would like to see payback analysis
- 3. Explore Timber to reduce embodied carbon but focus on operational carbon
- 4. Explore costs of captured water for irrigation
- 5. Full A/C vs. partial A/C and displacement & dehumidification ventilationwould like more info and visit schools
- 6. Daylight Studies: would like more info from work completed
- 7. Review Occupancy Schedule relative to Energy Model
- 8. Town PV Array: 2MW anticipated. Amaresco and D+W to communicate/coordinate

Recent Decisions

- 1. LEED v4: Need 20% above new energy code, ASHRAE 90.1-2016 or 35% above current code, ASHRAE 90.1-2010
- 2. Energy Model Analysis found that: Achieving this in the Baseline project would have been marginal without taking additional measures.
- 3. As a result, the D+W team has integrated the following elements in the baseline project costs, which were previously included in Tier 2:
 - Electrical: Provide enhanced lighting network controls with feedback mechanisms. Provide plug load sub-metering with additional outlets in each classroom, kitchen, cafeteria, gym, and library that would allow for 75% of outlets to be shut off with occupancy sensor.
 - Infiltration: .08 cfm/sf @75Pa in lieu of .4: Essentially meeting Passive
 House standards. Will require blower door tests, IR analysis, enhanced
 scrutiny by exterior envelope commissioning agent during and after
 construction. While this will be addressed in soft costs, additional
 specifications and requirements would be included for contractor to
 ensure super tight envelope.
 - Window to wall ratio: change from 30% to 25%
 - Roof R-value: change from R-40 ci to R-60 ci.

Current Decision Points

Baseline: Natural Gas heating system, displacement ventilation throughout, with A/C in the Admin and Sp. Educational spaces: Using Option 7 as an example: \$83M Project Cost Estimate

- **Tier-1:** Fossil Fuel Free: Use Centralized Municipal Water-Source Heat Pump: Add \$1.1M OR
- **Tier-2:** Fossil Fuel Free: Use Geothermal Heating System: Add \$3.5M
- Alternate Structural Frame Analysis: Use Timber Frame Construction in lieu of Steel Frame (Carbon)

Add \$300k for partial (Entry, limited corridor, cafeteria)

Add \$2M for classroom wings

- **100% AC:** Add \$1.3M
- Rainwater Harvesting for irrigation: Add \$200k

Max Possible Total: \$90.3M

Tier 1 vs. Tier 2 – Heating/Cooling Systems

Tier 1: Municipal Water Source Heat Pump System

Pros

- Aligns with Westwood Resiliency and Sustainability Comprehensive Draft Plan
- Lower upfront cost

Cons

- Less energy efficient than Tier 2 system resulting in:
 - May require increased electrical service capacity
 - More solar energy required for NZE
 - Increased generator size required
- Need supplemental electric boiler due to heat rejection
- More mechanical equipment visible exterior than Tier 2
- Higher HVAC sound levels at building exterior vs. Tier 2
- More maintenance -moving parts, vs. Tier 2

Tier 2: Geothermal Source Heat Pump System

Pros

- Aligns with Westwood Resiliency and Sustainability Comprehensive Draft Plan
- More energy efficient than Tier 1 system resulting in:
 - Likely decrease in electrical service capacity vs Tier 1
 - Less solar energy required for NZE
 - Smaller generator size required
- Less mechanical equipment visible at building exterior
- Lower HVAC sound levels at building exterior vs. Tier 1
- Less annual maintenance: fewer moving parts vs. Tier 1

Cons

- Higher upfront cost
- Requires test wells and mini-study to confirm feasibility

Discussion – PV / Net Zero Energy/Carbon

Annual savings from Westwood PV array could help offset cost of Tier 1 or Tier 2, net zero energy/fossil fuel free approach

Net Zero Energy: Achievable by accepting either Tier 1 or Tier 2 system

Reducing CO2 Emissions:

- Operational: Fossil Fuel Free / All Electric
- Embodied: Timber Framing

Recommendation to SBC?

Baseline: Natural Gas heating system, displacement ventilation throughout, with A/C in the Admin and Sp. Educational spaces: Using Option 7 as an example: \$83M Project Cost Estimate

- **Tier-1:** Fossil Fuel Free: Use Centralized Municipal Water-Source Heat Pump: Add \$1.1M OR
- **Tier-2:** Fossil Fuel Free: Use Geothermal Heating System: Add \$3.5M
- Alternate Structural Frame Analysis: Use Timber Frame Construction in lieu of Steel Frame (Carbon)

Add \$300k for partial (Entry, limited corridor, cafeteria)

Add \$2M for classroom wings

- **100% AC:** Add \$1.3M
- Rainwater Harvesting for irrigation: Add \$200k

Max Possible Total: \$90.3M

LEED Checklist Review

Υ	?	N					
1	0	0	Integrative Process	1			
1			Integrative Process	1			
Υ	?	N	-				
3	6	6	Location and Transportation	15			
		N	LEED for Neighborhood Development Location	15			
1			Sensitive Land Protection	1			
1	1		Cwet High Priority Site	2			
1	1	3	Surrounding Density and Diverse Uses (RP@4)	5			
	2	2	Cred: Access to Quality Transit (RP@1)	4			
		1	Credt Bicycle Facilities	1			
	1		Reduced Parking Footprint	1			
	1		Creen Vehicles	1			
Υ	?	N					
4	7	1	Sustainable Sites	12			
Υ			Press Construction Activity Pollution Prevention	Required			
Υ			Press Environmental Site Assessment	Required			
1			Site Assessment	1			
	2		Site Development - Protect or Restore Habitat (RP@2)	2			
1			Cwell Open Space	1			
	3		Rainwater Management	3			
	2		□wst Heat Island Reduction	2			
1			Light Pollution Reduction	1			
		1	Cwell Site Master Plan	1			
1			□wet Joint Use of Facilities	1			
Υ	? N						
3	9	0	Water Efficiency	12			
Υ			Preve Outdoor Water Use Reduction	Required			
Υ			Press Indoor Water Use Reduction	Required			
Υ			Press Building-Level Water Metering	Required			
1	1		Outdoor Water Use Reduction	2			
2	5		Indoor Water Use Reduction	7			
	2		Cooling Tower Water Use	2			
	1	L	Cred: Water Metering	1			
Y	?	N	F	••			
22	9	0	Energy and Atmosphere Fundamental Commissioning and Verification	31 Required			
Y				Required			
Y			Minimum Energy Performance Building-Level Energy Metering	Required			
_			2 2 2	Required			
Υ 5	4		- I wild in the ingeron the individual to	'			
5	1		Enhanced Commissioning	6			
	2		Enhanced Commissioning Optimize Energy Performance (RP@8)	6 16			
5	2		Enhanced Commissioning Optimize Energy Performance (RP@8) Advanced Energy Metering	6 16 1			
5 14	2		Enhanced Commissioning Optimize Energy Performance (RP@8) Advanced Energy Metering Demand Response	6 16 1 2			
5	1 2		Enhanced Commissioning Optimize Energy Performance (RP@8) Advanced Energy Metering Demand Response Renewable Energy Production (RP@2)	6 16 1 2 3			
5 14	2		Enhanced Commissioning Optimize Energy Performance (RP@8) Advanced Energy Metering Demand Response	6 16 1 2			

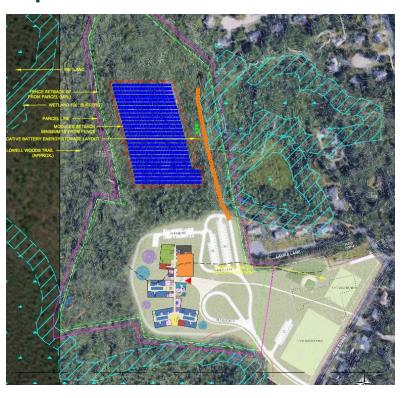
Project Name: Westwood Hanlon ES

Date: 6.1.20

			Date: 0.1.20	
Υ	?	N		
3	9	1	Materials and Resources	13
Υ			Storage and Collection of Recyclables	Required
Υ			Construction and Demolition Waste Management Planning	Required
	5		Building Life-Cycle Impact Reduction (RP@2)	5
1	1		BPDO - Environmental Product Declarations	2
	2		Building Product Disclosure and Optimization - Sourcing of Raw Materials	2
1		1	Building Product Disclosure and Optimization - Material Ingredients	2
1	1		Construction and Demolition Waste Management	2
Υ	?	N		
6	10	0	Indoor Environmental Quality	16
Υ			Parez Minimum Indoor Air Quality Performance	Required
Υ			Press Environmental Tobacco Smoke Control	Required
Υ			Power Minimum Acoustic Performance	Required
2			Enhanced Indoor Air Quality Strategies	2
2	1		cred: Low-Emitting Materials	3
1			c∞dt Construction Indoor Air Quality Management Plan	1
	2		□ Indoor Air Quality Assessment	2
	1		□wdt Thermal Comfort	1
1	1		code Interior Lighting	2
	3		credt Daylight	3
	1		credit Quality Views	1
	1		Acoustic Performance	1
Υ	?	N		
4	2	0	Innovation	6
1			cwd: Innovation: Resonsible Purchasing - Lamps	1
1			Innovation: Economic and GHG Analysis of Mechanical Systems	1
1			Innovation: Pilot - Integrative Analysis of Building Materials	1
	1		credit Innovation: TBD	1
	1		credit Innovation: TBD	1
1			Credit LEED Accredited Professional	1
Υ	?	N		
2	2	0	Regional Priority (max of 4 points) Credit Names have been <u>underlined</u>	4
		х	Count Surrounding Density and Diverse Uses (RP@14)	
	1		c∞d Access to Quality Transit (RP@1)	1
	1		Site Development - Protect or Restore Habitat (RP@2)	1
1			c∞ Optimize Energy Performance (RP@8)	1
1			cws Renewable Energy Production (RP@2)	1
	х		c∞ Building Life-Cycle Impact Reduction (RP@2)	
48	54	8	TOTAL Possible Points:	110
Cer	tifie	d: 4	to 49 points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80 to 110	

Certified: 40 to 49 points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80 to 110

Layout Sizing Options (Overlaid on Option 7S)


Option 1 – 3MW

Option 2 – 2.5MW

Option 3 – 2MW

Option	System Size (KWdc)	Tree Clear Required (Acres)
1	3,000.48	12.99
2	2,508.00	11.94
3	2,006.40	11.24

Shuttleworth Field / Hanlon School - Construction Synergies

- If the Town decides to move forward with a large School/fields/parking project at the Shuttleworth Field location, many construction synergies exist.
- The Proposed System will generate enough electricity on-site to support a Net-Zero designation for the new school. This system is a lower cost alternative to an on-site rooftop or parking canopy design. So, in addition to the annual energy savings, the Town is saving ~\$1.5M in construction costs by avoiding the need to install a rooftop solar array.
- Tree clearing from a Solar PV project is shown in the indicative image to the right.
 - Green locations indicate where existing tree and vegetation will not be disturbed.
 - Orange location indicates site impact of Solar PV.
 - 2.3 acres of tree-clearing savings for the new school, an estimated \$25,000 in cost-savings
- Similarly, Ameresco will be constructing an access road from Gay Street into the parcel. Approximately 700' of this road may be also used by the Town's new school construction team, an estimated savings to the Town of \$40,000.

Previous Design

Next Steps

- ☐ June 4th: Community Presentation: Review Options with Cost
- June 12: School Building Committee: Sustainability Decisions
- June 19: School Building Committee: Preferred Option and PSR Vote