Westwood Public Schools Hanlon Elementary School Building Project Sustainability Subcommittee 08.18.2020

Agenda

- Decision Points Overview
- Geothermal Test Well update
- Overview: Life Cycle Cost Analysis (LCCA)
- Rainwater Cistern Irrigation
- Recommendation to SBC

Decision Points - Overview

- 1. Priority: 20% above new energy code to achieve 2% points from MSBA
- 2. Heating/Cooling System options:
 - Baseline: Natural Gas
 - Tier 1: Water Source Heat Pump with supplemental electric boiler
 - Tier 2: Ground Source Heat Pump (Geothermal) :
 - Tier 3: Ground Source Heat Pump (Geothermal): with supplemental electric boiler, less wells
- 3. 100% A/C vs. partial A/C and dehumidification ventilation
- 4. Rainwater Cistern-Irrigation

•

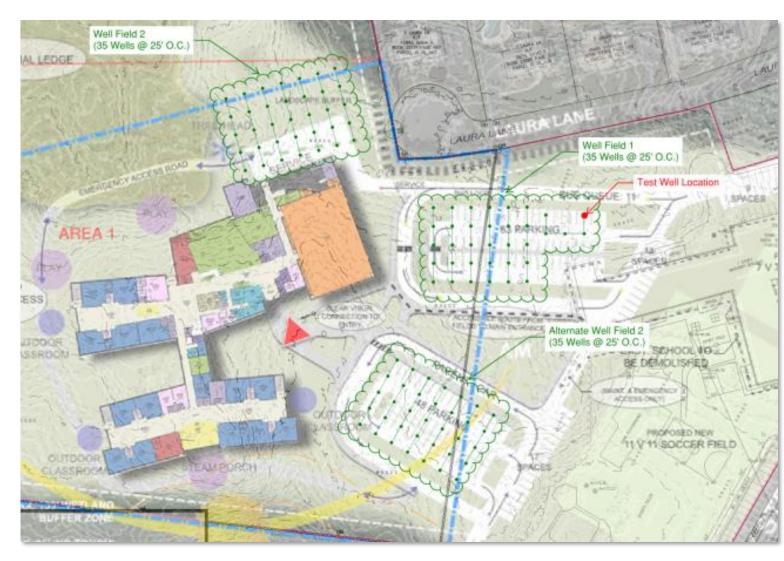
Geothermal Test Well – Update

Test Well Program and Geologic Conditions:

- Test Well completed with no issues, faster than expected (600' in one day)
- Vibration levels measured were low
- Granite encountered 10' below grade
- Water yield: approx. 5-10 GPM

Implications for Design:

- Rock has higher conductivity than soil: Granite = good
- Once thermo-conductivity test is complete (next week), well will be covered



Geothermal Test Well – Possible Locations

Implications for Design:

- Approximately 70 wells are anticipated at 25' apart.
- 3-4 months for drilling (with two drill rigs)
- Can be done at beginning, during or end of construction (noncritical path item)

Life Cycle Cost Analysis – Summary

EUI

Baseline	System	Gross Capital Investment*	Annual Elec. Cons. (kWh)	Annual Gas Cons. (MBTU)	Annual Electric Cost	Annual Gas Cost	Combined Utility Cost	Annual Utility \$/s.f.	Annual kBTU/s.f. (EUI)	Annual Maint. Cost	20 Year Exterior Equipment Replacement Cost	Combined Annual Expense	Combined Expense Savings**	Total Life-Cycle Savings***	Discounted Payback (Years)****
Code Baseline Natural Gas	1. Hot water coil heating/chilled water coil cooling VAV AHU system with energy recovery and terminal VAV boxes with hot water reheat coils 2. Code-efficient gas-fired non-condensing boiler plant 3. High-efficiency (code) water-cooled chiller plant with cooling tower	\$7,065,144	542,150	1,784.8	\$108,430	\$22,489	\$130,919	\$1.16	32.1	\$132,704	\$1,469,500	\$263,623	-		
Option	System	Gross Capital Investment*	Annual Elec. Cons. (kWh)	Annual Gas Cons. (MBTU)	Annual Electric Cost	Annual Gas Cost	Combined Utility Cost	Annual Utility \$/s.f.	Annual kBTU/s.f. (EUI)	Annual Maint. Cost	20 Year Exterior Equipment Replacement Cost	Combined Annual Expense	Combined Expense Savings**	Total Life-Cycle Savings***	Discounted Payback (Years)****
Base Design Natural Gas	 Dehumidification displacement ventilation diffusers with radiant heating panels Gas-fired heating/dx cooling VAV ventilating units with energy recovery with terminal VAV boxes with CO2 controls High efficiency gas-fired condensing boiler plant 		511,760 energy	1,561.7 savings	\$102,353 above	\$19,678 Code	\$122,031 Baseli	\$1.08 Ne	29.2	\$130,279	\$919,850	\$252,310	\$11,313	\$1,856,606	Instant *****
Tier 1 WSHP	 Dehumidification displacement ventilation diffusers with radiant heating panels Hot water coil heating/chilled water cooling VAV ventilating units with energy recovery with terminal VAV boxes with CO2 controls High efficiency water-cooled chiller plant with dry cooler Supplemental electric boiler plant 	\$7,666,934	887,380	0.0	\$175,476	\$0	\$175,476	\$1.55	26.8	\$122,079	\$330,000	\$297,555	-\$33,932	-\$685,229	Not Reached
Tier 2 GSHP	 Dehumidification displacement diffusers with radiant heating panels Hot water coil heating/chilled water cooling VAV ventilating units with energy recovery with terminal VAV boxes with CO2 controls Geothermal wells with high-efficiency water-to-water source heat pump chillers 	\$10,917,434	667,000	0.0	\$133,400	\$0	\$133,400	\$1.18	20.1	\$121,079	\$0	\$254,479	\$9,144	-\$2,307,572	Not Reached
Tier 3 GSHP Elct Blr	 Dehumidification displacement diffusers with radiant heating panels Hot water coil heating/chilled water cooling VAV ventilating units with energy recovery with terminal VAV boxes with CO2 controls Geothermal wells with high-efficiency water-to-water source heat pump chillers Supplemental electric boiler plant 	\$10,459,048	754,620	0.0	\$150,923	\$0	\$150,923	\$1.33	22.8	\$122,079	\$0	\$273,002	-\$9,379	-\$2,396,360	Not Reached

Other Considerations

- The use of full AC will adjust the total numbers proportionately: The 20% above energy code will still be achieved
- EUI Impact of using 100% AC vs. partial AC is negligible: Thornton Tomasetti estimates 0.35 to .50 EUI increase and \$1,625 to \$2,000 annual energy cost
- Tier 1 (water source heat pump): Biggest concern is noise impact and additional cost to mitigate

Tier 1 vs. Tier 2 – Heating/Cooling Systems

Tier 1: Municipal Water Source Heat Pump System

Pros

- Aligns with Westwood Resiliency and Sustainability
 Comprehensive Draft Plan
- Lower upfront cost

Cons

- Less energy efficient than Tier 2 system resulting in:
 - > May require increased electrical service capacity
 - More solar energy required for NZE
 - Increased generator size required
- Need supplemental electric boiler due to heat rejection
- More mechanical equipment visible exterior than Tier 2
- Higher HVAC sound levels at building exterior vs. Tier 2
- More maintenance -moving parts, vs. Tier 2

Tier 2: Geothermal Source Heat Pump System

Pros

- Aligns with Westwood Resiliency and Sustainability Comprehensive Draft Plan
- More energy efficient than Tier 1 system resulting in:
 - Likely decrease in electrical service capacity vs Tier 1
 - Less solar energy required for NZE
 - Smaller generator size required
- Less mechanical equipment visible at building exterior
- Lower HVAC sound levels at building exterior vs. Tier 1
- Less annual maintenance: fewer moving parts vs. Tier 1

Cons

• Higher upfront cost

Fossil Fuel Free vs. Natural Gas - Discussion

Rainwater Cistern – Irrigation: \$140k

- Utilizing native plants and water efficient irrigation methods can minimize the need for excessive water
- Harvesting rain water: effective and educational for a small area
- The heaviest rain events: spring
 vs.
 Most need for irrigation is during July/August. The tank can
 never be large enough to meet the peak demands
- Supplemental water necessary to meet the irrigation needs
- Cistern/tank water needs treatment to potable water standards. Increased annual operating and maintenance costs
- Will not achieve payback
- Potential for increased cost due to possible ledge

40,000 gallon tank

10'-12' below grade

Annual water savings: 595,000 gallons

15% of water demand met

Decision Points - Overview

- 1. Priority: 20% above new energy code to achieve 2% points from MSBA.... \$83.3 M
- 2. Heating/Cooling System options:

Baseline: Natural GasIncludedTier 1: Water Source Heat Pump with supplemental electric boiler: Add \$1.1MTier 2: Ground Source Heat Pump (Geothermal) :Add \$3.5 MTier 3: Ground Source Heat Pump (Geothermal):Add \$3.5 Mwith supplemental electric boiler, less wellsAdd \$3.5 M

3. 100% A/C vs. partial A/C and dehumidification ventilation:...... \$ 1.3 M

4. Rainwater Cistern-Irrigation:	••••••	\$ <u>0.2 M</u>
	Possible max:	\$88.3 M Total

Questions?