HVAC Systems Overview LEED and NZE Review

Hanlon Elementary School Westwood, MA

October 8, 2020

Ground Water Source Heat Recovery Heat Pump Chiller/Heater Plant

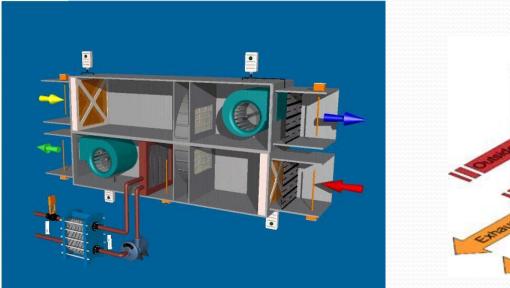
Modular Heat Recovery Heat Pump Chillers

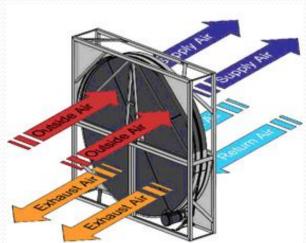
	Module 1 Heating I	Module 2 Heating and Coolin	Module 3 g Cooling
Figure shows a bank of three modules: Module 1 in Heating Module 2 in Heating and Cooling Module 3 in Cooling	Condenser Evaporator	Condenser Evaporator	Condenser Evaporator
Load Cooling		┿╋	

BENEFITS:

- High-efficiency
- Modular design provides level of redundancy & individual module control
- Heat recovery provides reheat during cooling season
- Maneuverable All modules fit through 36" door and have low center of gravity with base cutouts for pallet jacks/forklifts
- Durability & Reliability
- Service friendly with easy access to all major components
- Fossil Fuel Free Zero combustion design

*Simplified single line water circuit shown; V=motorized isolation and control valve


Ground source - Closed Loop Geothermal Well Field



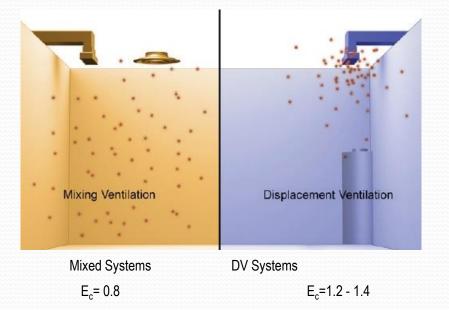
Vertical closed loop wells are used to provide ground source condenser water to heat recovery heat pump chiller plant, which is used to provide hot water heating and chilled water cooling

Air Handling Units for Displacement Systems

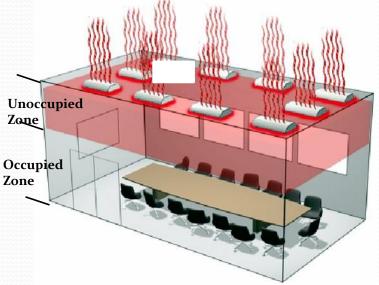
Features:

- Hot Water Heating & Chilled Water Cooling
- Variable Speed Airflow Control
- Energy Recovery Ventilation
- MERV-14 Supply Filtration
- CO₂ demand Ventilation Control
- Lower Noise Levels No Compressors or Condenser Fans

Air Handling Unit Zone Roadmap Level 1


Air Handling Unit Zone Roadmap Level 2

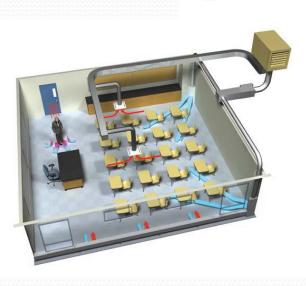
Displacement Ventilation System Benefits


- High Ventilation Effectiveness & Pollutant Removal: Supply airflow distributed at slightly lower discharge air temperature, low velocity and low within space to generate an upward "displacement" movement of airflow when the ventilation contacts heat generating sources (i.e. People, Lights, Equipment)
- <u>Load Reduction</u> Results in <u>Smaller equipment &</u> <u>systems and lower installed and operating costs</u> for Displacement Systems, because only the Occupied Zone is Conditioned.

Low Noise Operation

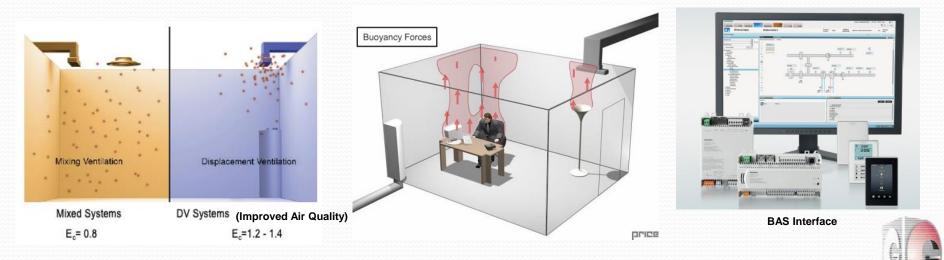
Energy Efficient:

- Energy Recovery: Transfers energy from the return air stream to the supply air stream to pre-heat or pre-cool the outside air.
- Variable Air Volume w/ CO2 Demand Control Ventilation: Modulates the airflow to large single zone areas in accordance to space mounted thermostat and CO2 sensors reducing energy consumption due to reduced air changes. CO2 can be over-ridden to provide increased outdoor airflow
- Perimeter Radiation Heating & Cooling Allows use of Hydronic Heating / Cooling system for Night Setback and Supplemental Heating/Cooling



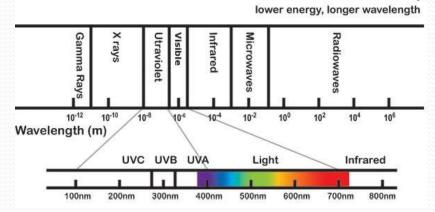
Space Level HVAC Systems & Equipment

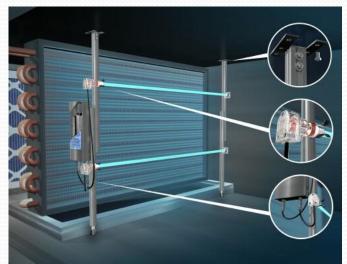
- Wall mounted Combination Thermostat
 - Controls variable air volume box for:
 - Heating
 - Ventilation
 - Cooling
 - Also controls heating/cooling from ceiling mounted radiant panels
 - Slide/incremental adjustment of setpoints:
 - Heating 70 deg F +/- 2 deg F
 - Cooling 75 deg F +/- 2 deg F
 - Space level CO2 and Humidity reading
- Displacement diffuser:
 - Provides supply/ventilation air to the space
 - Supply air will vary based on reading from wall mounted thermostat
- Radiant Heating/Cooling Panels:
 - Provides supplemental heating and cooling.



Current Proposed HVAC System Design Benefits for Mitigation of Airborne Pathogens:

- HVAC system provides ventilation rates that meet or exceed ASHRAE 62.1-2016 and International Mechanical Code (IMC) 2018 ventilation requirements.
- Air handling units are capable of 100% outside airflow.
- Air handling unit ventilation distribution systems are provided with MERV-14 filters (ASHRAE recommendation for new School design).
- Classroom areas have displacement ventilation which has increased ventilation effectiveness (20-40% better) versus other overhead mixed air systems.
- Excellent Pollutant Removal: With Displacement Systems, there is no airflow mixing at the space level. Airflow moves upward towards ceiling exhaust point and pollutants are removed from the occupied zone.
- HVAC system controlled by Building Automation system which can schedule occupied/unoccupied periods, over-ride CO2 demand ventilation controls to provide increased fresh air ventilation.
- Other Benefits: Low noise operation; reduced cooling loads & high energy efficiency



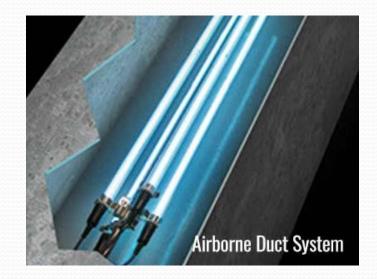

HVAC System – UV-C technology

Potential addition of UV-C system to RTUs

Benefits:

- UV-C has very short wavelengths and is therefore extremely energetic.
- UV-C, aka Germicidal UV, de-activates microorganism DNA/RNA to stop reproduction.
- UV-C system when placed near cooling coils will continuously clean coils, helping to maintain efficiency. Reduces coil cleaning costs.
- Minimum fan energy pressure drop penalty
- Can be unit or duct mounted
- Proven Technology
- Approximate 90%+ kill rate effectiveness when used with high efficiency filter and typical design ventilation airflow rates (CO2 demand controls should be over-ridden)
- Industry Test Data available (ASHRAE Standard 185.1)
- Use with High efficiency filter increases effectiveness (MERV-13 minimum, MERV-14 (preferred by ASHRAE)

HVAC System – UV-C technology


Potential addition of UV-C system to RTUs

Cons:

- Additional maintenance costs
- Additional precautions must be taken by maintenance staff to avoid exposure to UV-C and Mercury vapor located in emitters
- Under normal operation UV-C system will not expose occupants to UV-C, Mercury vapors or Ozone; However equipment must be properly maintained to ensure safe operation.
- Not all manufacturers are equivalent in terms of technology and efficiency

Costs:

- First Cost = Approximately \$0.70 / SF Installed
- Maintenance Cost = Approximately \$0.10 / SF for emitter inspection/changes (Emitters last 9000 hours)
- Energy Costs = negligible increase energy cost

Westwood Hanlon LEED

LEED v4 for BD+C: Schools

Project Checklist

Project Name: Westwood Hanlon ES

Date: 10.7.20

Y ? N				Y				
1 0 0	Integ	rative Process	1	3	8 2	Mater	ials and Resources	13
1	Credit	Integrative Process	1	Y		Prereq	Storage and Collection of Recyclables	Required
Y?N				Y	-	Prereq	Construction and Demolition Waste Management Planning	Required
		tion and Transportation	15		5	Credit	Building Life-Cycle Impact Reduction (RP@2)	5
	Credit	LEED for Neighborhood Development Location	15		1	Credit	BPDO - Environmental Product Declarations	2
1	Credit	Sensitive Land Protection	1		1 1	-	Building Product Disclosure and Optimization - Sourcing of Raw Materials	2
1 1	Credit	High Priority Site	2	1	_	Credit	Building Product Disclosure and Optimization - Material Ingredients	2
	Credit	Surrounding Density and Diverse Uses (RP@4)	5		1	Credit	Construction and Demolition Waste Management	2
	Credit	Access to Quality Transit (RP@1)	4		? N			
	-	Bicycle Facilities	1		0 0		or Environmental Quality	16
1	Credit	Reduced Parking Footprint	1	Y		Prereq	Minimum Indoor Air Quality Performance	Required
1	Credit	Green Vehicles	1	Y		Prereq	Environmental Tobacco Smoke Control	Required
Y ? N			10	Y		Prereq	Minimum Acoustic Performance	Required
		ainable Sites	12	2		Credit	Enhanced Indoor Air Quality Strategies	2
Y	Prereq	Construction Activity Pollution Prevention	Required	2	1	Credit	Low-Emitting Materials	3
Y	Prereq	Environmental Site Assessment	Required			Credit	Construction Indoor Air Quality Management Plan	1
	Credit	Site Assessment	1		2	Credit	Indoor Air Quality Assessment	2
2	Credit	Site Development - Protect or Restore Habitat (RP@2)	2		1	Credit	Thermal Comfort	1
	Credit	Open Space	1		1	Credit	Interior Lighting	2
3	Credit	Rainwater Management	3		3	Credit	Daylight	3
	Credit	Heat Island Reduction	2		· .	Credit	Quality Views	1
	Credit	Light Pollution Reduction	1		1 ? N	Credit	Acoustic Performance	1
1	Credit	Site Master Plan	1	Y				
1 Y ? N	Credit	Joint Use of Facilities	1		2 0	Innov		6
	141-4-	- F (C)	12	1		Credit	Innovation: Resonsible Purchasing - Lamps	1
3 9 0 Y	Prereg	r Efficiency Outdoor Water Use Reduction	Required	1		Credit	Innovation: Economic and GHG Analysis of Mechanical Systems Innovation: Pilot - Integrative Analysis of Building Materials	1
Y	Prereq		Required	-	1	Credit	Innovation: TBD	1
Y	Prereq	Indoor Water Use Reduction	Required		1	Credit		1
1 1	Credit	Building-Level Water Metering Outdoor Water Use Reduction	2	1	·	Credit	Innovation: TBD LEED Accredited Professional	1
2 5	Credit	Indoor Water Use Reduction	2	Y ·	? N	Credit	LEED Accredited Professional	'
2 3	Credit	Cooling Tower Water Use	2	2	_	Donio	nal Priority (max of 4 points) Credit Names have been <u>underlined</u>	4
1	Credit	Water Metering	1	2	2 U X		Surrounding Density and Diverse Uses (RP@4)	
Y ? N	Credit	water metering	'		1	Credit	Access to Quality Transit (RP@1)	1
	Fner	gy and Atmosphere	31		1	Credit	Site Development - Protect or Restore Habitat (RP@2)	1
Y	Prereq	Fundamental Commissioning and Verification	Required	1	·	Credit	Optimize Energy Performance (RP@8)	1
Y	Prereq	Minimum Energy Performance	Required	1		Credit	Renewable Energy Production (RP@2)	1
Y	Prereq	Building-Level Energy Metering	Required		x	Credit	Building Life-Cycle Impact Reduction (RP@2)	
Y	Prereg	Fundamental Refrigerant Management	Required		<u>~</u>		Building Life-Oyole Impact Reduction (RI (2))	
5 1	Credit	Enhanced Commissioning	6	48 5	3 9	TOTA	- Possible Poin	ts: 110
14 2	Credit	Optimize Energy Performance (RP@8)	16				points, Silver: 50 to 59 points, Gold: 60 to 79 points, Platinum: 80 to 110	
1	Credit	Advanced Energy Metering	1	oerti	neu	0 10 40		
2	Credit	Demand Response	2	10	52	0	TOTAL The Green Eng	nineer
3	Credit	Renewable Energy Production (RP@2)	3	48	33	9	TOTAL The Green Eng Sustainable Design C	onsulting
1	Credit	Enhanced Refrigerant Management	- 1	Ce	rtifi	ed: 4	0 to 49 points	
		Green Power and Carbon Offsets	2					
2	Credit	Green Power and Carbon ()tteets						

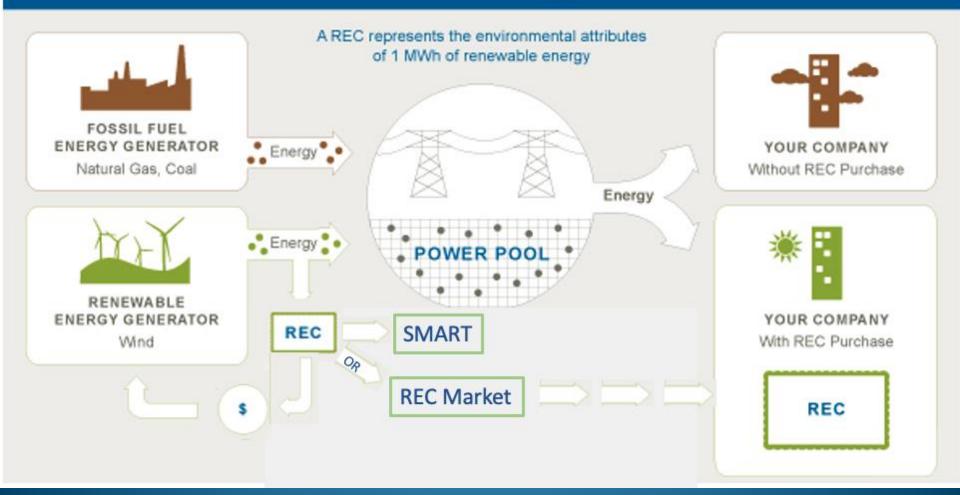
Westwood Hanlon REC Primer

- RECs put the "Renewable" in Renewable Electricity
- REC = Renewable Energy Certificate are a mechanism to track the production of clean energy and represent the social and environmental benefit of the production of 1 MWh. These can be sold separately from the power itself.
- Electrons produced by a solar panel are no different than electrons produced by a coalfired power plant or any other electricity generating technology.
- Renewable electricity generators, therefore, produce two distinct market commodities:
 - 1) electricity and
 - 2) RECs.
 - These commodities can be used and/or sold separately or together. The REC instrument embodies the environmental attributes of the underlying electricity generated from a renewable resource.
- Since Ameresco is selling the SRECs generated (or retained as part of SMART program) at Shuttleworth the power delivered to Westwood can no longer be formally considered "green".
- So, to formally claim NZE the town would have to rebuy RECs for the amount of renewable energy claimed.

Sources: https://www.epa.gov/sites/production/files/2017-09/documents/gpp-guidelines-for-making-solar-claims.pdf

What is a REC?

A REC is a tradeable, market-based instrument that represents the legal property rights to the "renewableness"— or all non-power attributes of renewable electricity generation.


A REC is issued for every megawatthour (MWh) of electricity generated and delivered to the electric grid from a renewable energy resource.

The REC owner has exclusive rights to make claims about "using" or "being powered with" the renewable electricity associated with that REC and thus avoid the double counting of the same generation attributes by another party.

RECs are the instrument used to substantiate the use of renewable electricity for both voluntary and compliance purposes. For voluntary purposes, consumers such as residential households and businesses use RECs to demonstrate claims of using renewable electricity. For compliance purposes, RECs are used to track that utilities are meeting their state-imposed mandates.

Westwood Hanlon REC Arbitrage

What is a Renewable Energy Certificate?

Westwood Hanlon REC Arbitrage

- REC arbitrage (also referred to as a REC swap) is a procurement strategy used by electricity consumers to simultaneously meet two objectives:
 - 1) decrease the cost of their renewable electricity use and
 - 2) substantiate renewable electricity use and carbon footprint reduction claims.
- The strategy is used by consumers installing self-financed renewable electricity projects or consumers who purchase renewable electricity directly from a renewable electricity project, such as through a power purchase agreement (PPA).
- A prerequisite of REC arbitrage is that there are differences in REC prices.
- State renewable portfolio standard (RPS) policies are a major demand driver for RECs and consequently impact REC prices.

Cost of Buying RECs: Sample to repurchase RECs to offset 100% of electricity use

	Tier 3	
	Electrica	I
693,790	kWh/	yr 766,320
\$ 0.0012	REC rate* (\$/kW	h) \$ 0.0012
\$ 832.55	Replacement \$/	yr \$ 919.58
	693,790 \$ 0.0012 \$ 832.55	Electrica 693,790 kWh/s \$ 0.0012 REC rate* (\$/kW)

Sources: https://www.epa.gov/sites/production/files/2017-09/documents/gpp-guidelines-for-making-solar-claims.pd

What are Net Zero Energy Buildings?

- Currently, practitioners and policy-makers do not have a consensus-based definition of net zero energy, near net zero energy, or energy positive buildings.
- The most commonly referenced definition was developed by the U.S.DOE in 2015 (see Table 1).
- Although the U.S. Department of Energy's (DOE) and the Massachusetts DOER Zero Net Energy Buildings Task Force's definitions emphasize the use of renewable energy on-site, many stakeholders view off-site renewables as essential to achieving net zero energy given limited roof and open space.
- Emissions-based targets can be more feasible for existing facilities that have already made significant energy efficiency investments and/or have a mix of on- and off-site renewable power.

NET ZERO ENERGY	NEAR NET ZERO ENERGY	ENERGY POSITIVE Produce more energy from renewables (on- or off-site) than needed for energy consumption. ²² —Boston Planning and Development Agency	
An energy efficient building which generates on-site renewable energy greater than the total amount consumed on-site. ¹⁶ —U.S. Department of Energy	Buildings that may be designed to achieve one or more net zero definitions (e.g. net zero energy or emissions), but may not achieve a net zero energy in operations every year. ¹⁹ —National Renewable Energy Laboratory		
Note: Some "net zero" definitions allow off-site renewable energy to be purchased to offset on-site use. The U.S. DOE refers to this as Renewable Energy Certificate — Zero Energy Building (REC-ZEB) . Similarly, some definitions consider "net zero carbon" or "net zero emissions" rather than energy use for their performance standard. These standards typically allow for off-site generation.	Note: There is no official federal definition of near net zero energy.	Note: In practice, some facilities that designate themselves energy positive do not use all building energy loads in their calculations. ²¹	

Westwood Hanlon NZE Classification

National Renewable Energy Laboratory NZE Classifications: In general, a project can claim to be NZE with either on or off-site PV (assuming RECs are retained or repurchased). They would be considered different "classes" or approaches, but all would be NZE.

NZE Classifications:

Class A – renewables within building footprint – e.g. PV on the roof Class B – renewables on building site – e.g. parking canopies Class C – off site renewables – e.g. community solar (where SRECs are retained) Class D – RECs or renewable energy purchased – e.g. buy RECs and carbon offsets

Westwood Hanlon Energy Performance Requirements

MSBA Requirement: The Project is subject to the MSBA requirements of Project Advisory 41 -Sustainable Building Design Policy for Green Schools. Since the Project is seeking an additional 2% reimbursement from the MSBA, the building will need to demonstrate at least a 20% reduction compared to the base energy code (IECC 2018/ASHRAE 90.1-2016 with MA Amendments). Compliance for this requirement is enforced through the point total under the LEED for Schools v4 EAc Optimize Energy Performance credit which uses ASHRAE 90.1-2010 as the baseline. Our understanding is that projects seeking the additional reimbursement will be required to show at least 14 points (35% reduction compared to 90.1-2010) under the EAc Optimize Energy Performance credit to show equivalency.

Stretch Energy Code Requirement: Since Westwood is a Stretch Code Community, the Project will be subject to ASHRAE 90.1-2013 with updated Massachusetts Amendments and must demonstrate at least a 10% EUI reduction, either in site or source energy, to demonstrate energy code compliance.

Source:

https://www.massschoolbuildings.org/building/advisories/Project_Advisory_41 https://www.mass.gov/doc/780-cmr-ninth-edition-chapter-13-energy-efficiency-amendments-as-of-272020/download